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VI. CONCLUSIONS 

I t is clear that, even allowing the approximations 
made, the argument presented is at best a formal one. 
To justify the differentiations performed the series 
differentiated must converge uniformly whereas the 
series in question are known not to converge (or, in 
fact, exist) at all unless a partial summation of the 
diagonal matrix elements is first performed. On the 
other hand, the argument makes the result plausible 
and shows the arrangement in which terms must be 
taken to obtain a consistent theory. 

The neglect of the 5 linked terms and the overlapping 
vertex terms is probably of greater physical interest. I t 
may be possible to take the two effects into considera
tion simultaneously but if this is the case the correct 
accounting procedure to be followed is by no means 
clear. The £ linked terms have been shown by Sawada5 

to give rise to the effect termed by other authors1 the 
depletion effect. Therefore, neglecting the S linked 
terms is equivalent to neglecting the depletion effect 
and is, therefore, perhaps justifiable at low densities 
only. 

The chief interest of this theory may be the fact that 
it allows a consistent approach to the problem of a 

TH E purpose of this note to point out that an ex
pression for the grand partition function for a 

superconductor, originally derived by Gaudin,1 has 
analytic properties near the transition point in the 
complex temperature plane similar to those described 
by Lee and Yang2 in their statistical theory of 
condensation. 
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bound, but saturated, many-boson system, i.e., liquid 
helium. The theories of the many-boson system which 
have been developed all are limited to repulsive forces. 
The reason is essentially that if the forces are attractive 
so as to provide a bound state, v(0) is negative. The 
state in which all particles have zero momentum is then 
no longer the ground state of the diagonal part (in mo
mentum representation) of the Hamiltonian and so 
cannot lead to the perturbed ground state. One reflec
tion of this is that the lowest order phonon spectrum 
becomes imaginary. 

I t is seen that this difficulty may be avoided in 
practice for liquid helium by considering densities large 
enough that the energy versus density curve is concave 
upwards. The single-particle energies are then positive 
despite the fact that the ground-state energy is negative 
and a consistent theory may be obtainable. One need 
not be overly concerned about neglecting low densities 
since the system cannot exist stably at a density below 
the equilibrium density in any event. 
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The Lee-Yang analysis pertains to a classical system 
of hard-core molecules. Only a finite number of such 
molecules will fit into a volume 0 ; and it follows from 
this that the grand partition function Z is an entire 
function of the fugacity y. Z must have a finite number 
of zeroes distributed symmetrically about the real axis 
in the complex y plane. None of these zeroes can occur 
on the real, positive y axis; but as the volume tends to 
infinity, the zeroes may cluster densely on lines crossing 
this axis, thus pinching it at some points. Lee and Yang 
identify such points as phase transitions. 

P H Y S I C A L R E V I E W V O L U M E 1 3 2 , N U M B E R 3 1 N O V E M B E R 1 9 6 3 

Analytic Properties of the Partition Function near the Normal-to-
Superconducting Phase Transition* 

R. BALIAN 

Centre d''Etudes Nucleaires de Saclay, Gif-sur-Yvette (Seine et Oise), France 

AND 

J. S. LANGER 

Carnegie Institute of Technology, Pittsburgh, Pennsylvania 
(Received 28 June 1963) 

It is shown that the grand partition function for a superconductor has analytic properties near the transi
tion point in the complex temperature plane similar to those described by Lee and Yang in their statistical 
theory of condensation. The normal and superconducting regions of the complex plane are separated by a 
line of zeroes which, in the limit of infinite volume, becomes a natural boundary. 



A N A L Y T I C P R O P E R T I E S O F P A R T I T I O N F U N C T I O N 959 

We wish to consider the quantum system described 
by the BCS pair Hamiltonian3 

The recent, more rigorous, analysis indicates that this 
expression for Z is correct apart from factors of order 
unity. Thus, as shown by Gaudin, Eq. (2) yields the 
correct grand canonical potential, 

212 p.p'.o-
—€M <ep, ep' <CM 

(1) 

Here the ep's are kinetic energies measured from the 
chemical potential JJL. 0 is the volume and g is a coupling 
constant which is positive for attractive interactions 
between pairs of electrons in a band of width 2 CM. 
Obviously, (1) does not satisfy the criteria for the Lee-
Yang analysis. In particular, there are no hard cores to 
provide an upper bound for the density, which is essen
tial to the argument concerning discrete zeroes in the 
complex y plane. The Pauli principle, however, does 
provide a mechanism which forces states of high density 
to have high energies, thus making them statistically 
less important in the grand canonical ensemble. It 
seems possible, therefore, that the Lee-Yang picture is 
of quite general validity. 

According to the above argument, no truncation of 
the conventional linked cluster expansion can describe 
a phase transition because any such truncation violates 
the Pauli principle. For example, the sum of ladder 
diagrams4 cannot be continued analytically from above 
to below the transition temperature, nor can the BCS 
solutions be continued in the other direction. A much 
more complete and detailed solution of the many-body 
problem is required, allowing, in particular, a study of 
Z for large but finite volume. 

The basic ingredient of such a solution is contained 
in the work of Gaudin.1 After an ingenious diagram
matic rearrangement of the standard perturbation ex
pansion, Gaudin is able to sum a simple contribution 
from every diagram and arrive at an approximate ex
pression for the partition function which is sensible on 
both sides of the transition temperature. These tech
niques recently have been generalized and extended by 
one of the present authors (J.S.L.); and a detailed 
report of this work is now in preparation. Here we shall 
present only the particular result which is relevant to 
this discussion. 

Gaudin's expression for the grand partition function 
may be written in the form, 

2 i 

Jo 
= Q <feexp[-fiF(*,j8)], (2) 

where Z0 is the partition function for the noninteracting 
system and 

2 fcosh[i/3(€p2+g///3)^]l 
F ( ^ ) = / ~ E l n ^ — ^ " • (3) 

G P I cosh(i/?ep) J 
3 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
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*(/?) = InZ, 
/3Q 

(4) 

for both normal and superconducting phases in the 
limit £2-^oo. The detailed analytic properties of (2) 
turn out to be exactly correct in the very immediate 
vicinity of the transition point, which is, of course, the 
most interesting place. 

We are looking only for qualitative agreement with 
Lee and Yang; therefore, it does not make much dif
ference which variable we choose for analytic continua
tion of Z. It is slightly more convenient to continue in 
the inverse temperature 0. We shall perform this con
tinuation by means of a saddle-point analysis of (2). 

First note that the singularities of Y(t,P), given by 

ep
2/32+g^+(2H-l)27r2=0, (5) 

lie outside the region Re£>0, Re/3>0; thus, the only 
singularities oi\f/(l3) in the half-plane Re/3>0 are branch 
points lying at the zeroes of Z. 

When j8 is fixed at a real value less than the critical 
inverse temperature pc, Y increases monotonically as t 
varies from 0 to +oo. For P>pe, Y has a single mini
mum at t=s>0. The critical temperature f$i~l occurs 
when the minimum s passes through £=0, and is thus 
the solution of 

F*(0A) = 0. (6) 

(Here we use subscripts to denote partial derivatives 
of Y with respect to t, 0.) Then, for a fixed complex 
value of jS in the vicinity of /3C, Y has a saddle point s 
near the origin, the position of which is determined as 
a function of £ by 

rt(sji)=o. (7) 

Equation (7) turns out to be the usual B.C.S. gap 
equation. It may be expanded about /3C to give 

Y,*(0fie) 
C8-/J.)+- (8) 

One may check from Eq. (3) that all of the required 
derivatives exist and that Yt,p<0, Yt

2>0. 
A contour map of the surface Re F (/,/?) in the complex 

t plane for fixed /3 is shown in Fig. 1. The dominant con
tribution to Z for large O depends on the position of the 
origin 0 relative to the saddle-point s. If 0 lies either on 
a mountain or in the valley (a), we always may find a 
path of integration from 0 to + 0 0 along which the 
modulus of the integrand decreases monotonically. In 
this case Z may be obtained by integrating along the 
path of steepest descent away from 0. We call this path 
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FIG. 1. Contour 
map of ReF in the 
complex t plane. 

Ci, and the resulting integral Z\: 

Zi- 1 r t
 Ye{0fi) 

z0~Yt(os: QYWfi) 
(9) 

On the other hand, if 0 lies in the valley (b), the main 
contribution to Z is Z2, the integral along the path C2 
which crosses the saddle point 5. 

Z s / Z o ^ e x p C - O F C ^ l p T r O / F . K ^ ) ] 1 / 2 . (10) 

In both cases Z(f$) has no zeroes and $(&) is analytic. 
The interesting situation occurs when 0 lies very 

near the level line I which separates the two cases dis
cussed above. This happens when P lies near the line 
/' on which 

ReF(*,0) = ReF(O,0) = O, Re(/3-/3 c)>0 (11) 

in the complex p plane. This line is shown in Fig. 2. 
Now both contours Ci and C2 make comparable con
tributions to (2); thus 

Z ~ Z i + Z 2 . (12) 

Because Z2 is a rapidly oscillating function of p, Z will 
have zeroes in the P plane along the line /" defined by 

that is: 

ReF(*, /3)=—ln| 
212 I 

\ZX\ = \Z* 

1 [27ra|F*(0,/3)|2 

,Re ( / ? - /3 c )>0 . (13) 

The position of the zeroes along this line is given by 

a rgZ 2 =argZi+ (2n+ l )x ; 

NORMAL 

Z * z . 

SUPERCONDUCTING 
FIG. 2. Zeroes of 

Z in the complex /? 
plane. 

which implies 

ImF(s,/3) 

1 
= — C ( 2 » + l V - a r g F l ( 0 , / 3 ) + J a igM*, j8 ) ] . (14) 

Equations (13) and (14) may be solved explicitly by 
expansion about fZ=pe. In lowest order we use Eq. (8) 
and define 

YtAOA) 

L2YA0AW2 

Then Eqs. (13) and (14) reduce to 

G8-/3c)=pei9. 

and 
^ ± X i * + ( 1 / W ) l n ^ O p 2 ) ] , 

P ^ ( T / Q ) ( 2 n - 1 ) , 

(15) 

(16) 

(17) 

when n is a large positive integer. 
The above treatment breaks down for values of 

P~pc of order 0~1/2 or less, for which the correction 
terms in (9) become important. The contributions from 
the integrations along C\ and C2 no longer can be sepa
rated; and the zeroes of Z very close to pc are then 
found to be the solutions of 

e r f ( p e W 2 ) = - l . (18) 

Even for the roots of (18) closest to p = 0, Eqs. (16) 
and (17) locate the zeroes of Z quite accurately. 

As shown in Fig. 2, the locus I" of the zeroes of Z 
separates the normal and superconducting regions of 
the P plane. When 0 increases, I" tends to V [Eq. (11)], 
and the zeroes move toward pc. As 0—>oo? yp has finite 
limits in both regions, but these limit functions no 
longer are analytic continuations of each other. 

There are, in fact, a few significant differences be
tween the above analysis of the superconducting transi
tion and the cases studied by Lee and Yang. Instead 
of being orthogonal to the real axis, the natural bound
ary V has a singular point at P=pc, where it has the 
slope =bj7r. In addition, it follows from Eq. (17) that 
the density of zeroes, that is their number per unit 
length divided by £2 in the limit £2 —»oo? tends to zero 
like |/3—£c|

 a s P ~* Pc- As shown by Lee and Yang, the 
behavior of this density is related to the nature of the 
transition which is here of second order. 

The above analysis was based only on the form of (2) 
and some simple properties of F . In the complete ver
sion of this theory the right-hand side of (2) becomes a 
multidimensional integral;.but the saddle-point feature 
persists. Whenever the partition function may be rep
resented in this form, there must exist Lee-Yang zeroes 
near the contour defined by Eqs. (7) and (11). 


